
Examining a Pipelined Approach for Information Extraction with

respect to machine learning

 Mehnaz Khan Dr. S.M.K. Quadri

 Research Scholar Director

 Department of Computer Science Department of Computer Science
 University of Kashmir University of Kashmir

Abstract

Pipelining is a process in which a complex task is

divided into many stages that are solved sequentially. A

pipeline is composed of a number of elements

(processes, threads, co routines, etc.), arranged in such

a way so that the output of each element is fed as input

to the next in the sequence. Many machine learning

problems are also solved using a pipeline model.

Pipelining plays a very important role in applying the

machine learning solutions efficiently to various natural

language processing problems. The use of pipelining

results in the better performance of these systems.

However, these systems usually result in considerable

computational complexity. For this reason researchers

were motivated for using active learning for these

systems. Reason of using active learning is that these

algorithms perform better than the traditional learning
algorithms keeping the training data same. In this paper

we discuss an active learning strategy for pipelining of

an important natural language processing task i.e.

information extraction.

1. Introduction
 A number of natural language processing applications

use machine learning algorithms. These applications

include parsing, semantic role labelling, information

extraction, etc. Using a machine learning algorithm for
one natural language processing task often requires the

output from another task. Thus we can say these tasks

are dependent on one another and therefore must be

pipelined together. Therefore, a pipeline organization is

used to model such situations. The benefit of using such

an organization includes its ease of implementation and

the main drawback is accumulation of errors between the

stages of the pipeline that considerably affects the value

of the results [4]. Pipelining has been used for a number

of natural language applications e.g. bottom-up

dependency parsing [11], semantic role labelling [8]. A

bidirectional integration of pipeline models has been

developed as a solution to the problem of error

accumulation in traditional pipelines [10]. In

this paper we show pipelining of information

extraction. Although work has been done earlier in

this regard which show pipelining of entity detection

and relation extraction stages of information

extraction, however, not much has been done with

regard to part-of-speech tagging. One of the
important contributions with regard to pipelining of

information extraction includes that of Roth and

Small (2008) who have given a method in which they

combine separate learning strategies from a number

of pipelined stages into a single strategy [2]. Here we

theoretically discuss about including part-of-speech

tagging stage of information extraction into the

pipeline. We first give a general overview of the

information extraction process in Section 2 along

with an example to show how the process will work.

In Section 3 we discuss about some of the work done

in this field earlier and the problems faced by using

supervised learning for information extraction. Those

problems are the main reasons for preferring active

learning approach. In the later sections we discuss

machine learning and pipelining and also the reason

why we suggest incorporating part-of-speech tagging
in the pipelining process.

2. Simple Architecture of Information

Extraction
Information extraction (IE) can be defined as a process

which involves automatic extraction of structured

information such as entities, relationships between
entities, and attributes describing entities from

unstructured and/or semi-structured machine-readable

documents [5]. It can also be defined as a process of

retrieving relevant information from documents.

Applications of IE include news tracking [12],

customer care [9], data cleaning [1], and classified ads

[13]. Figure 1 shows a simple architecture of

information extraction system [7]. The overall process

of information extraction is composed of a number of

subtasks such as segmentation, tokenization, part of

speech tagging, named entity recognition, relation

extraction, terminology extraction, opinion extraction,

etc.

Mehnaz Khan et al , International Journal of Computer Science & Communication Networks,Vol 2(4), 491-495

491

ISSN:2249-5789

 Raw text

 sentences

 tokenized

 sentences

 pos-tagged sentences

 chunked

 sentences

 relations

Figure 1: Simple Architecture of Information

Extraction System

These subtasks of information extraction can be

implemented using a number of different algorithms e.g.

list-based algorithms for extracting person names or

locations [18], rule-based algorithms for extracting phone

numbers or mail addresses, and advanced machine

learning and statistical approaches for extracting more

complex concepts.

Sentence segmentation is the process of breaking the

text into component sentences. Tokenization breaks the

text into meaningful elements such as words, symbols.

This is followed by part-of-speech tagging as shown in

Figure 1 which labels these tokens with their POS

categories. An example of applying these steps to a piece

of text is shown below:

Jake works in Calgary, Alberta with his brother

Micheal.

Jake works in Calgary Alberta

NP VB P NP NP

With his brother Micheal

P DET NP NP

Figure 2. Tokenization and Labelling

This is followed by entity detection. It is the process of

identifying the entities having relations between one

another, e.g. considering the above sentence, entities are

detected as follows:

Figure 3: Entity Detection

Finally, after entities have been identified, the

relations that exist between them are extracted in the

relation detection step as follows:

{Jake, Calgary} works_in

{Jake, Micheal} brother_of

{Calgary, Alberta} located_in

{Jake, Alberta} works_in

Relation Detection

3. Related Work
Using pipelining in modelling the process of

information extraction has resulted in an increase in

efficiency. A lot of work has been done in this regard.

Roth and Small have proposed a model that has

demonstrated a significant reduction in supervised data

requirements [2]. Efficient information extraction

pipelines have been developed that have resulted in the

efficiency gains of up to one order of magnitude [15].

A pipeline-based system has been developed for

automated annotation of Surgical Pathology Reports

[6]. There has been a lot of research in the field of

information extraction using supervised machine
learning. A number of supervised approaches have

been proposed for the task of relation extraction which

consists of some feature based methods [27, 14] and

kernel methods [19, 3]. However, supervised methods

have a number of disadvantages. First of all, we

cannot extend these methods to define new relations

between the entities due to lack of new labeled data as

supervised methods have a predefined set of labeled

data. Same problem occurs if we wish to extend the

entity relations to higher order. Also for large input

data these methods are computationally infeasible

[16]. One of the main disadvantages of using

supervised methods is the high cost associated with

them as they require large amounts of annotated data.

Active learning [20] provides a way to reduce these

labeled data requirements. These algorithms are

capable of collecting new labeled examples for
annotation by making queries to the expert. The main

advantage of using pipelining is that when the

pipelining process starts the examples that are selected

first are those that are needed at the beginning phases

of pipeline followed by those that are needed later.

4. Pipelining and Machine Learning
In the supervised machine learning problem a

function maps the inputs to the desired outputs by

determining which of a set of classes a new input
belongs to. This is determined on the basis of the

training data which contains the instances whose

class is known e.g. classification problem. The

mapping function can be represented by f. h denotes

the hypothesis about the function to be learned.

Inputs are represented as X = (x1, x2,…, xn) and

outputs as Y=(y1, y2,…., yn) [17]. Therefore,

hypothesis or the prediction function can be written

as

SENTENCE

SEGMENTATION

TOKENIZATION PART OF SPEECH

TAGGING

RELATION

DETECTION
ENTITY DETECTION

 Jake PERSON

 Calgary LOCATION

 NP Alberta LOCATION

 NP

 Micheal PERSON

 NP

Mehnaz Khan et al , International Journal of Computer Science & Communication Networks,Vol 2(4), 491-495

492

ISSN:2249-5789

 h : X Y

h is the function of vector-valued input and is

selected on the basis of training set of m input vector

examples i.e.

X =(x1,x2,…, xn) h(X)

Training set = { X1, X2,…., Xm}

Therefore, the predicted value can be given as

 y = h(x) = argmaxyʹϵY f(x, yʹ)

In case of pipelining, we have different stages. Let

there be N stages. Therefore, each stage n depends on

the previous (n-1) stages i.e.

 x, y
(0)

,…., y
(n-1)

 x
(n)

Therefore, in case of pipelining the predicted value

can be written as

 y = h(x) = [argmax f
(n)

(x
(n)

, yʹ)]

where n = 1,…, N.

As discussed earlier in this paper, active learning

algorithms reduce the number of labeled examples

needed to learn any concept by collecting new
unlabelled examples for annotation [21]. The

examples are selected from the unlabelled data

source U and are then labeled and added to the set of

labeled data L [20]. Figure 4 shows the process of

active learning [25]. The examples are selected by

making queries to the expert. Query strategies that

have been used earlier are uncertainty sampling [23]

and query by committee [26]. In both these strategies

the point is to evaluate the informativeness of the

unlabeled examples.

labeled training set L

 induce a model

 label

 new

 instances Inspect Unlabeled
 Data

ANNOTATOR
 Select queries

 Unlabeled pool U

Figure 4: Pool Based Active Learning
The most informative instance or best query is

represented as x
*

A, where A represents the query

selection method used [20]. In uncertainty sampling,

the algorithm selects that example about which it is

least confident. In that case,

 x
*
LC = argmax 1- Pθ (y | x) [24]

In case of margin sampling,

 x
*
M= argmin Pθ(y1 | x) - Pθ(y2 | x)

(1)

where y1 and y2 are first and second most probable

class labels [22].

Another uncertainty sampling strategy that uses

entropy as uncertainty measure,

 x
*
H = argmax - Σi Pθ(yi | x) log Pθ(yi | x)

(2)

where yi represents all the class labels [20]

Scoring functions are also used for selecting the

examples to be labeled or annotated. Scoring

functions are used for mapping an abstract concept to

a numeric value. Here, the idea is to calculate the

score values for each instance to be labeled and the

one with the minimum value is selected [2] i.e.

 x
*
 = argmin q(x)

where x is selected from the unlabeled data U.

Therefore, for each stage n of the pipeline, there is a

separate querying function i.e. q
(n)

 , and after

combining all these functions we get,

 x
*
=argminΣq

(n)
(x)

 where n = 1,.., N and x belongs to U and N is the

total number of stages of a pipeline. The pipelining

process using active learning consists of the

following steps:

 1. As discussed earlier, each stage n of the

pipeline has its own querying function q
(n)

 and

learner l
(n)

. First of all, for each stage n, the

hypothesis function as well as the querying function

is estimated.
 2. The unlabelled examples or instances are

then selected by the learner from unlabeled data U

and after labeling are added to labeled data L for

each stage n of the pipeline.

 3. As L changes after annotation of new

instances, hypothesis is modified accordingly for

each stage n.

 4. The process is repeated until the final

hypothesis is obtained after all the N stages of

pipeline have been completed.

5. Stages of Information Extraction used in

Pipelining
Pipelining has been applied to information extraction

earlier where the focus has been on entity detection

and relation extraction. But as far as part-of-speech

tagging is involved, not much has been done towards

 h

Machine learning

model

Mehnaz Khan et al , International Journal of Computer Science & Communication Networks,Vol 2(4), 491-495

493

ISSN:2249-5789

including it in the pipelining process of information

extraction. Each stage of a pipeline is dependent on

the earlier stages. In pipelining of information

extraction, entity detection and relation detection

highly depend on part-of-speech tagging. As

discussed earlier, part-of-speech tagging labels each

word or phrase of a sentence with its POS category.

It helps in recognizing different usages of the same

word and assigns a proper tag e.g. in the sentences
below the word „protest‟ has different usages:

The protest is going on. (Noun)

They protest against the innocent killings. (Verb)

Including part-of-speech tagging in the pipeline

using active learning will result in the performance

gain as the machine learning methods used for part-

of-speech tagging have resulted in more than 95%

accuracy. Moreover, in any natural language there

are a number of words that are part-of-speech

ambiguous (about more than 40%) and in such cases

automatic POS tagging makes errors and hence

require the use of machine learning techniques for

tagging.

 As discussed earlier, part-of-speech tagging labels

each word or phrase of a sentence with its POS
category, entity detection identifies the entities

having relationships between one another in the

sentence and relation detection extracts those

relationships. Hence, in all these processes sentences

are selected and annotated for all stages of the

pipeline.

5.1. Including POS Tagging in Pipelining
 In this section we theoretically show how active

learning would be applied to POS tagging. As
discussed earlier, first the informativeness of the

unlabeled instances, sentences in our example,

would be evaluated. Sentences would be selected

from the unlabeled data and annotated/labeled by

the annotator i.e. each word in the sentence would

be tagged by its appropriate POS category. The

annotated sentences will then be added to the

labeled data. In Query By Uncertainty (QBU)

approach, the informativeness of the unlabeled

instances/examples is determined by evaluating the

entropy- a measure of uncertainty associated with a

random variable. In our example, these unlabeled

instances are sentences. Therefore, we have to

evaluate the entropy of sequence of words wi in a

sentence of length n, i.e.

H(w1,w2,…,wn) = -Σ p(w1,w2,..,wn) log
p(w1,w2,…,wn)

From equation (2) we get,

x
*
H = -Σ p(yi | x) log p(yi | x)

for each word wi of the sentence, posi represents the

part-of-speech tag for that word. Thus, the querying

function for the part-of-speech tagging stage will be

given as

qpos = -Σ p(posi | wi, yi, posi-1, posi-2) log p(posi |

wi, yi, posi-1, posi-2)

where i = 1 to n and posi-1 and posi-2 represent the
tags of previous two words.

5.2. Active learning for Entity and Relation

Detection
For this stage too QBU approach will be used which

selects those unlabeled examples/instances about

which the learner is least confident. According to
equation (1), the best query in case of multi class

uncertainty sampling is given by

 x
*
M = argmin Pθ (y1 | x) - Pθ (y2 | x)

where y1 and y2 are the first and second most

probable class labels. Accordingly, the querying

function for the entity and relation detection stage of

information extraction can be given as

 qERD = argmin p(y | xi) – p(yʹ| xi)

or

 qERD = argmin [f(xi, y) – f(xi, yʹ)]

i = 1 to n and y and y ʹare the first and second most

probable class labels.

For all the stages, the performance would be

calculated using three metrics i.e. precision, recall

and F-measure. For POS tagging, precision would be
calculated as number of correctly retrieved tags

divided by the total number of retrieved tags. Recall

would be calculated as number of correctly retrieved

tags divided by the actual number of tags. For entity

detection, precision would be calculated as the

number of correctly extracted entities divided by the

total number of extracted entities and recall would be

calculated as number of correctly extracted entities

divided by the actual number of entities. For relation

extraction, precision would be calculated as the

number of correctly extracted relations divided by

the total number of extracted relations and recall

would be calculated as the number of the correctly

extracted relations divided by the actual number of

relations. F- Measure for all these stages is equal to

2*precision*recall / precision + recall.

6. Conclusion and Future Work
. In this paper we discussed an active learning

process for the pipelining of information extraction

with focus on including part-of-speech tagging stage

into the pipeline. In Section 5.1 we theoretically

showed how active learning can be applied to part-

of-speech tagging and included into the pipeline. In

future we intend to show its empirical

implementation and performance evaluation using

the above mentioned metrics.

Mehnaz Khan et al , International Journal of Computer Science & Communication Networks,Vol 2(4), 491-495

494

ISSN:2249-5789

7. Acknowledgement
The authors are thankful to the faculty, Department

of Computer Science, University of Kashmir for their

constant support.

8. References
1. Sunita, S., and Anuradha, B. 2002. “Interactive

Deduplication using Active Learning”. In Proceedings of the

Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining(KDD-2002),

Edmonton, Canada.

2. Roth, D. And Small, K. 2008. “Active learning for
Pipeline Models”. AAAI 2008, pp. 683-688.

3. Bunescu, R. C., and Mooney, R. J. 2005. “A Shortest Path

Dependency Kernel for Relation Extraction”. Proceedings of
the conference on Human Language Technology and

Empirical Methods in Natural Language Processing, ACL,

724-731.

4. Razvan, B. 2008. “Learning with Probabilistic Features

for Improved Pipeline Models”. Proceedings of the 2008

Conference on Empirical Methods in Natural Language

Processing, 670–679.

5. Sunita, S. 2007. “Information Extraction”. Foundations

and Trends in Databases 1(3): 261–377.

6. Kevin, M., Michael, B., Jules, B., Wendy, C., John, G.,

Dilip, G., James, H., and Elizabeth, L. 2004.

“Implementation and Evaluation of a Negation Tagger in a

Pipeline-based System for Information Extraction from
Pathology Reports”. MEDINFO, 663-667.

7. Steven, B., Ewan, K., and Edward, L. 2006. “Natural

Language Processing/ Computational Linguistics with
Python”.

8. Finkel, J. R.; Manning, C. D.; and Ng, A. Y. 2006.

“Solving the problem of cascading errors: Approximate
Bayesian inference for linguistic annotation pipelines”. In

Proc. Of the Conference on Empirical Methods in Natural

Language Processing (EMNLP).

9. Manish, A., Ajay, G., Rahul, G., Prasan, R., Mukesh, M.,

and Zenita, I. 2007. “Liptus: Associating structured and

unstructured information in a banking environment”.

Proceedings of the 2007 ACM SIGMOD, 915-924.

10. Xiaofeng, Y., and Wai, L. 2010. “Bidirectional

Integration of Pipeline Models”. Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence, 1045-
1050.

11. Chang, M.-W.; Do, Q.; and Roth, D. 2006. “Multilingual

dependency parsing: A pipeline approach”. In Recent

Advances in Natural Language Processing, 195–204.

12. Jordi, T., Alicia, A., and Neus, C. 2006. Adaptive

Information Extraction, ACM Computing Surveys, 38(2).

13. Matthew, M., and Craig, K. 2005. “Semantic annotation

of unstructured and ungrammatical text”. In Proceedings of

the 19th International Joint Conference on Artificial

Intelligence (IJCAI), 1091–1098.

14. Shubin, Z., and Ralph, G. 2005. “Extracting relations
with integrated information using kernel methods”.

Proceedings of the 43rd Annual Meeting On Association for

Computational Linguistics, 419-426.

15. Henning, W., Benno, S., and Gregor, E. 2011.

“Constructing Efficient Information Extraction Pipelines”.

CIKM’11 ACM, Scotland, UK.

16. Nguyen, B., and Sameer, B. “A Review of Relation

Extraction”. Language Technologies Institute, School of

Computer Science Canergie Mellon University, Pittsburgh.

17. Nilsson, N.J. “Introduction to Machine Learning”.

Department of Computer Science, Stanford University.

18. Keigo, W., Danushka, B., Yutaka, M., and Mitsuru, I.
2009. “A Two-Step Approach to Extracting Attributes for

People on the Web”. ACM, Madrid, Spain.

19. Huma, L., Craig, S., John, S-T., Nello, C., and Chris, W.
2002. “Text Classification Using String Kernels”. Journal of

Machine Learning Research, 419-444.

20. Burr, S. 2010. “Active Learning Literature Survey”,
Computer Sciences Technical Report 1648, University of

Wisconsin–Madison.

21. Thompson, C.A., Califf, M.E., and Mooney, R.J. “Active
Learning for Natural Language Parsing and Information

Extraction”. In Proceedings of the Sixteenth International

Machine Learning Conference,406-414.

22. T. Scheffer, C. Decomain, and S.Wrobel. 2001. “Active

hidden Markov models for information extraction”. In

Proceedings of the International Conference on Advances in

Intelligent Data Analysis, Springer-Verlag, 309-318.

23. D. Lewis and W. Gale. 1994. “A sequential algorithm for

training text classifiers”. In Proceedings of the ACM SIGIR
Conference on Research and Development in Information

Retrieval. ACM/Springer, 3-12.

24. A. Culotta and A. McCallum. 2005. “Reducing labeling
effort for stuctured prediction tasks”. In Proceedings of the

National Conference on Artificial Intelligence 746–751.

25. Burr, S. 2009. “Active Learning. Advanced Statistical

Language Processing”. Machine Learning Department,

Carnegie Mellon University.

26. H.S. Seung, M. Opper, and H. Sompolinsky. “Query by

committee”. In Proceedings of the ACM Workshop on

Computational Learning Theory, 287–294.

27. Nanda, K. 2004. “Combining Lexical, Syntactic, and

Semantic Features with Maximum Entropy Models for

Extracting Relations”. Proceedings of the ACL 2004.

Mehnaz Khan et al , International Journal of Computer Science & Communication Networks,Vol 2(4), 491-495

495

ISSN:2249-5789

