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Abstract 
 

Pipelining is a process in which a complex task is 

divided into many stages that are solved sequentially. A 

pipeline is composed of a number of elements 

(processes, threads, co routines, etc.), arranged in such 

a way so that the output of each element is fed as input 

to the next in the sequence. Many machine learning 

problems are also solved using a pipeline model. 

Pipelining plays a very important role in applying the 

machine learning solutions efficiently to various natural 

language processing problems. The use of pipelining 

results in the better performance of these systems. 

However, these systems usually result in considerable 

computational complexity. For this reason researchers 

were motivated for using active learning for these 

systems. Reason of using active learning is that these 

algorithms perform better than the traditional learning 
algorithms keeping the training data same. In this paper 

we discuss an active learning strategy for pipelining of 

an important natural language processing task i.e. 

information extraction. 

 

1. Introduction  
   A number of natural language processing applications 

use machine learning algorithms. These applications 

include parsing, semantic role labelling, information 

extraction, etc. Using a machine learning algorithm for 
one natural language processing task often requires the 

output from another task. Thus we can say these tasks 

are dependent on one another and therefore must be 

pipelined together. Therefore, a pipeline organization is 

used to model such situations. The benefit of using such 

an organization includes its ease of implementation and 

the main drawback is accumulation of errors between the 

stages of the pipeline that considerably affects the value 

of the results [4].  Pipelining has been used for a number 

of natural language applications e.g. bottom-up 

dependency parsing [11], semantic role labelling [8]. A 

bidirectional integration of pipeline models has been 

developed as a solution to the problem of error 

accumulation in traditional pipelines [10]. In 

 

 

 

 

 

 

 

 

this paper we show pipelining of information 

extraction. Although work has been done earlier in 

this regard which show pipelining of entity detection 

and relation extraction stages of information 

extraction, however, not much has been done with 

regard to part-of-speech tagging. One of the 
important contributions with regard to pipelining of 

information extraction includes that of Roth and 

Small (2008) who have given a method in which they 

combine separate learning strategies from a number 

of pipelined stages into a single strategy [2]. Here we 

theoretically discuss about including part-of-speech 

tagging stage of information extraction into the 

pipeline. We first give a general overview of the 

information extraction process in Section 2 along 

with an example to show how the process will work. 

In Section 3 we discuss about some of the work done 

in this field earlier and the problems faced by using 

supervised learning for information extraction. Those 

problems are the main reasons for preferring active 

learning approach. In the later sections we discuss 

machine learning and pipelining and also the reason 

why we suggest incorporating part-of-speech tagging 
in the pipelining process. 

 

2. Simple Architecture of Information 

Extraction 
Information extraction (IE) can be defined as a process 

which involves automatic extraction of structured 

information such as entities, relationships between 
entities, and attributes describing entities from 

unstructured and/or semi-structured machine-readable 

documents [5]. It can also be defined as a process of 

retrieving relevant information from documents. 

Applications of IE include news tracking [12], 

customer care [9], data cleaning [1], and classified ads 

[13]. Figure 1 shows a simple architecture of 

information extraction system [7]. The overall process 

of information extraction is composed of a number of 

subtasks such as segmentation, tokenization, part of 

speech tagging, named entity recognition, relation 

extraction, terminology extraction, opinion extraction, 

etc.        
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Figure 1: Simple Architecture of Information 

Extraction System 
 

These subtasks of information extraction can be 

implemented using a number of different algorithms  e.g. 

list-based algorithms for extracting person names or 

locations [18], rule-based algorithms for extracting phone 

numbers or mail addresses, and advanced machine 

learning and statistical approaches for extracting more 

complex concepts.  

Sentence segmentation is the process of breaking the 

text into component sentences. Tokenization breaks the 

text into meaningful elements such as words, symbols. 

This is followed by part-of-speech tagging as shown in 

Figure 1 which labels these tokens with their POS 

categories. An example of applying these steps to a piece 

of text is shown below: 

Jake works in Calgary, Alberta with his brother 

Micheal. 

Jake  works in Calgary Alberta 

NP VB P NP NP 

 

With his brother Micheal 

P DET NP NP 

Figure 2. Tokenization and Labelling 
 
This is followed by entity detection. It is the process of 

identifying the entities having relations between one 

another, e.g. considering the above sentence, entities are 

detected as follows: 

 

 

 

 

 
Figure 3: Entity Detection 

 

Finally, after entities have been identified, the 

relations that exist between them are extracted in the 

relation detection step as follows: 

{Jake, Calgary}        works_in 

{Jake, Micheal}        brother_of 

{Calgary, Alberta}       located_in 

{Jake, Alberta}         works_in 

 

Relation Detection 
 

3. Related Work 
Using pipelining in modelling the process of 

information extraction has resulted in an increase in 

efficiency. A lot of work has been done in this regard. 

Roth and Small have proposed a model that has 

demonstrated a significant reduction in supervised data 

requirements [2]. Efficient information extraction 

pipelines have been developed that have resulted in the 

efficiency gains of up to one order of magnitude [15]. 

A pipeline-based system has been developed for 

automated annotation of Surgical Pathology Reports 

[6]. There has been a lot of research in the field of 

information extraction using supervised machine 
learning. A number of supervised approaches have 

been proposed for the task of relation extraction which 

consists of some feature based methods [27, 14] and 

kernel methods [19, 3]. However, supervised methods 

have a number of disadvantages. First of all, we 

cannot extend these methods to define new relations 

between the entities due to lack of new labeled data as 

supervised methods have a predefined set of labeled 

data. Same problem occurs if we wish to extend the 

entity relations to higher order. Also for large input 

data these methods are computationally infeasible 

[16]. One of the main disadvantages of using 

supervised methods is the high cost associated with 

them as they require large amounts of annotated data. 

Active learning [20] provides a way to reduce these 

labeled data requirements. These algorithms are 

capable of collecting new labeled examples for 
annotation by making queries to the expert. The main 

advantage of using pipelining is that when the 

pipelining process starts the examples that are selected 

first are those that are needed at the beginning phases 

of pipeline followed by those that are needed later. 

 

4. Pipelining and Machine Learning 
In the supervised machine learning problem a 

function maps the inputs to the desired outputs by 

determining which of a set of classes a new input 
belongs to. This is determined on the basis of the 

training data which contains the instances whose 

class is known e.g. classification problem. The 

mapping function can be represented by f. h denotes 

the hypothesis about the function to be learned. 

Inputs are represented as X = (x1, x2,…, xn) and 

outputs as Y=(y1, y2,…., yn) [17]. Therefore, 

hypothesis or the prediction function can be written 

as 

 

SENTENCE 

SEGMENTATION 

TOKENIZATION PART OF SPEECH 

TAGGING 

RELATION 

DETECTION 
ENTITY DETECTION 

 Jake              PERSON 

   

 Calgary          LOCATION 

  NP  Alberta  LOCATION 

  NP 

 Micheal           PERSON 

  NP 
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                              h : X         Y  

h is the function of vector-valued input and is 

selected on the basis of training set of m input vector 

examples i.e. 

X =(x1,x2,…, xn)                                         h(X) 

 

 

Training set = { X1, X2,…., Xm} 

 
Therefore, the predicted value can be given as 

 

          y = h(x) = argmaxyʹϵY f(x, yʹ) 

In case of pipelining, we have different stages. Let 

there be N stages. Therefore, each stage n depends on 

the previous (n-1) stages i.e. 

 

          x, y
(0)

,…., y
(n-1)

                        x
(n)

 

 

Therefore, in case of pipelining the predicted value 

can be written as 

 

      y = h(x) = [argmax f
(n)

(x
(n)

, yʹ)] 

where n = 1,…, N. 

As discussed earlier in this paper, active learning 

algorithms reduce the number of labeled examples 

needed to learn any concept by collecting new 
unlabelled examples for annotation [21]. The 

examples are selected from the unlabelled data 

source U and are then labeled and added to the set of 

labeled data L [20]. Figure 4 shows the process of 

active learning [25]. The examples are selected by 

making queries to the expert. Query strategies that 

have been used earlier are uncertainty sampling [23] 

and query by committee [26]. In both these strategies 

the point is to evaluate the informativeness of the 

unlabeled examples. 

 
labeled training set L 

                
                      induce a model 

 

 

 
        label    

        new 

       instances                   Inspect Unlabeled  
                                          Data       

 
 

ANNOTATOR 
                         Select queries 

                                           Unlabeled pool U 

 

Figure 4: Pool Based Active Learning 
The most informative instance or best query is 

represented as x
*

A, where A represents the query 

selection method used [20]. In uncertainty sampling, 

the algorithm selects that example about which it is 

least confident. In that case, 

 

                  x
*
LC = argmax 1- Pθ (y | x)  [24] 

 

In case of margin sampling, 

 

    x
*
M= argmin Pθ(y1 | x) - Pθ(y2 | x)                                               

(1) 

 

where y1 and y2 are first and second most probable 

class labels [22]. 
 

Another uncertainty sampling strategy that uses 

entropy as uncertainty measure, 

 

       x
*
H = argmax - Σi Pθ(yi | x) log Pθ(yi | x)                            

(2) 

 

where yi  represents all the class labels [20] 

 

Scoring functions are also used for selecting the 

examples to be labeled or annotated. Scoring 

functions are used for mapping an abstract concept to 

a numeric value. Here, the idea is to calculate the 

score values for each instance to be labeled and the 

one with the minimum value is selected [2] i.e. 

 

                 x
*
 = argmin q(x) 

 

where x is selected from the unlabeled data U. 

Therefore, for each stage n of the pipeline, there is a 

separate querying function i.e. q
(n)

 , and after 

combining all these functions we get, 

 

            x
*
=argminΣq

(n)
(x) 

 

  where n = 1,.., N and x belongs to U and N is the 

total number of stages of a pipeline. The pipelining 

process using active learning consists of the 

following steps: 

          1. As discussed earlier, each stage n of the 

pipeline has its own querying function q
(n)

 and 

learner l
(n)

. First of all, for each stage n, the 

hypothesis function as well as the querying function 

is estimated. 
          2. The unlabelled examples or instances are 

then selected by the learner from unlabeled data U 

and after labeling are added to labeled data L for 

each stage n of the pipeline. 

          3. As L changes after annotation of new 

instances, hypothesis is modified accordingly for 

each stage n. 

          4. The process is repeated until the final 

hypothesis is obtained after all the N stages of 

pipeline have been completed. 

 

5. Stages of Information Extraction used in 

Pipelining 
Pipelining has been applied to information extraction 

earlier where the focus has been on entity detection 

and relation extraction. But as far as part-of-speech 

tagging is involved, not much has been done towards 

    h 

Machine learning 

model 
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including it in the pipelining process of information 

extraction. Each stage of a pipeline is dependent on 

the earlier stages. In pipelining of information 

extraction, entity detection and relation detection 

highly depend on part-of-speech tagging. As 

discussed earlier, part-of-speech tagging labels each 

word or phrase of a sentence with its POS category. 

It helps in recognizing different usages of the same 

word and assigns a proper tag e.g. in the sentences 
below the word „protest‟ has different usages: 

 

The protest is going on. (Noun) 

They protest against the innocent killings. (Verb) 

 

Including part-of-speech tagging in the pipeline 

using active learning will result in the performance 

gain as the machine learning methods used for part-

of-speech tagging have resulted in more than 95% 

accuracy. Moreover, in any natural language there 

are a number of words that are part-of-speech 

ambiguous (about more than 40%) and in such cases 

automatic POS tagging makes errors and hence 

require the use of machine learning techniques for 

tagging.  

 As discussed earlier, part-of-speech tagging labels 

each word or phrase of a sentence with its POS 
category, entity detection identifies the entities 

having relationships between one another in the 

sentence and relation detection extracts those 

relationships. Hence, in all these processes sentences 

are selected and annotated for all stages of the 

pipeline. 

 

5.1. Including POS Tagging in Pipelining 
 In this section we theoretically show how active 

learning would be applied to POS tagging. As 
discussed earlier, first the informativeness of the 

unlabeled instances, sentences in our example, 

would be evaluated. Sentences would be selected 

from the unlabeled data and annotated/labeled by 

the annotator i.e. each word in the sentence would 

be tagged by its appropriate POS category. The 

annotated sentences will then be added to the 

labeled data. In Query By Uncertainty (QBU) 

approach, the informativeness of the unlabeled 

instances/examples is determined by evaluating the 

entropy- a measure of uncertainty associated with a 

random variable. In our example, these unlabeled 

instances are sentences. Therefore, we have to 

evaluate the entropy of sequence of words wi in a 

sentence of length n, i.e. 

 

H(w1,w2,…,wn) = -Σ p(w1,w2,..,wn) log 
p(w1,w2,…,wn) 

 

From equation (2) we get, 

 

x
*
H = -Σ p(yi  | x) log p(yi  | x) 

 

for each word wi of the sentence, posi represents the 

part-of-speech tag for that word. Thus, the querying 

function for the part-of-speech tagging stage will be 

given as 

 

qpos =  -Σ p(posi  | wi, yi, posi-1, posi-2) log p(posi  | 

wi, yi, posi-1, posi-2) 

 

where i = 1 to n and posi-1 and posi-2 represent the 
tags of previous two words. 

 

5.2. Active learning for Entity and Relation 

Detection 
For this stage too QBU approach will be used which 

selects those unlabeled examples/instances about 

which the learner is least confident. According to 
equation (1), the best query in case of multi class 

uncertainty sampling is given by 

       x
*
M = argmin Pθ (y1 | x) - Pθ (y2 | x) 

where y1 and y2 are the first and second most 

probable class labels. Accordingly, the querying 

function for the entity and relation detection stage of 

information extraction can be given as 

 

          qERD = argmin p(y | xi) – p(yʹ| xi) 

or 

         qERD = argmin [f(xi, y) – f(xi, yʹ)] 

i = 1 to n and y and y  ʹare the first and second most 

probable class labels. 

 

For all the stages, the performance would be 

calculated using three metrics i.e. precision, recall 

and F-measure. For POS tagging, precision would be 
calculated as number of correctly retrieved tags 

divided by the total number of retrieved tags. Recall 

would be calculated as number of correctly retrieved 

tags divided by the actual number of tags. For entity 

detection, precision would be calculated as the 

number of correctly extracted entities divided by the 

total number of extracted entities and recall would be 

calculated as number of correctly extracted entities 

divided by the actual number of entities. For relation 

extraction, precision would be calculated as the 

number of correctly extracted relations divided by 

the total number of extracted relations and recall 

would be calculated as the number of the correctly 

extracted relations divided by the actual number of 

relations. F- Measure for all these stages is equal to 

2*precision*recall / precision + recall. 

 

6. Conclusion and Future Work  
. In this paper we discussed an active learning 

process for the pipelining of information extraction 

with focus on including part-of-speech tagging stage 

into the pipeline. In Section 5.1 we theoretically 

showed how active learning can be applied to part-

of-speech tagging and included into the pipeline. In 

future we intend to show its empirical 

implementation and performance evaluation using 

the above mentioned metrics. 
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