

 D. Jeevalakshmi(M.Tech)
1 MD. Hayath Rajvee, M.Tech

2
 Pursuing M.Tech, Asst.Professor,

1,2QUBA College of Engineering and Technology,

Nellore.

ABSTRACT:- The floating point unit plays an important part in

the modern microprocessors. The output of the floating point operation

should be normalized. This paper mainly focuses on leading-zero

counting (LZC) and leading-zero anticipatory (LZA) logic for high

speed floating point addition and subtraction. New Boolean expressions

are derived for the new leading zero counter. When compared with the

known architectures the new circuits can be implemented effectively in

both static and dynamic logic and also requires less energy per

operation. The pre-decoding for normalization concurrently with

addition for the significant is carried out in this logic. Shift operation

for the normalization in parallel with the rounding operation is also

performed. The use of simple Boolean algebra allows the proposed logic

constructed from a simple cmos circuit. The proposed leading-zero

counter can also be integrated with a proposed leading-zero anticipation

logic for better and fast results.

I. INTRODUCTION

The speed and accuracy of microprocessors was developed
rapidly during the last decade. We have to consider
optimizing both the delay and energy consumption of the

modern microprocessors, in such a way that the floating
point units play a dominant role. The main operation of the

floating point data paths is the normalization. The output of
the normalization will follow the IEEE-754 standard
format i.e., 1.xxxxx.., x (0,1). The normalization process is

done by involving the leading zero counting. The problem
of normalization of the result involves counting the number

of leading zeros in the result and then shifting the result in
accordance to the outcome of the leading zero counter unit.
To update the exponent part correctly the derived leading

zero counter is also required. Almost all instruction sets of
contemporary microprocessors include a count leading

zeros (CLZ) instruction for fixed-point operands. In all the
cases a leading zero anticipator (LZA) is employed to
increase the computation speed.

This paper proposes a new leading zero counter and new
leading zero anticipation logic which works effectively

when compared with existing methods. In section 2 we
discuss the functionality of the existing methods .Section 3

discuss about the proposed methods for leading zero
counting and leading zero anticipation. Section 5 gives the
results and section 6 concludes the paper followed by

references.

II. FUNCTIONALITY OF EXISTING METHODS

A leading zero is any zero bit that leads a number string in
positional notation. In binary representation consider the
number of consecutive zeros that appear in a word before
the first more significant bit that equal to one. The later is
called leading digit. Leading zeroes occupy most significant
digits, which could be left blank or omitted for the same
numeric value. The process of encoding these leading zeros
is called leading zero counting. The n bits are assumed as

input A=AN-1,AN-2…A0 in the LZC, where AN-1 is the most

significant bit and produces log2n bits of the leading-zero
count Z and a flag V
that denotes the all-zero case for the input A. The existing
method is based on the two step encoding procedure. The
position of the leading digit of the input is marked first and
then the remaining bits are set to zeros.
For example, let us consider the input as 00011010 the
position of the leading digit is determined as 00010000. An
intermediate string S is produced to derive the one hot
representation. The bits of S that follow the leading digit are
set to one and the other more significant bits are set to zero.
For the same input the value of S is equal to 00011111. The

i
th

 bit of S is denoted as Si , 0 ≤ i ≤n-1is defined as follows
Si=An-1+An-2+…..+Ai+1+Ai.

Each bit in the equation reveals the existence of at least one

bit equal to 1 between the MSB and the i
th

 bit position. The
one-hot representation of the leading digit (L word) is
determined by detecting the case (0,1) for two consecutive
bits of S.

Li=Si+1.Ai
The value of Ls-1 is equal to the value of Sn-1. Here (.)
represents the logical AND and x represents compliment
operations respectively. The priority encoder [1] computes
the value of L. The encoder translates the number of leading
zeros to its weighted binary representation when the L word
is given to it. In the case of an 8-bit input operand the
number of leading zeros, Z bits, are given by

Z2=L3+L2+L1+L0
Z1=L5+L4+L1+L0
Z0=L6+L4+L2+L0

The all-zero flag V is set to S0 which shows that no bit is

equal to one in A. In dynamic CMOS floating-point-unit
implementations this approach is mostly preferred. The
leading-zero count is computed in few logic stages by

mailto:jeevadlakshmi@gmail.com
razwe2003@gmail.com

employing wide dynamic OR gates for the computation of
both the S and the Z bits.
When the circuit for detection of leading zeros does not
need to consider cases where leading ones might result [4],
then the leading zero indicator can be simplified to the
equation below

F=T̅iZ̅i+1, i≥0

Here a comparison of the operands is performed to ensure
that only the smaller operand is complemented during

subtraction. Other designs where this could be applied

would be where separate adders are provided for use when
the exponents are equal. One adder calculates A-B and the

other calculates B-A, and the result from the adder
producing a carry out is selected. Each adder then needs

only a leading zero detector. The detection of the number of
leading zeros to start in parallel with swapping, aligning and

inverting the operands. When the exponents differ by one,
the presumed smaller operand is shifted right one place and

then inverted. Since the operands must be normalized, the
function in the first bit must be G, and therefore the number

of leading zeros is determined by the number of following
bit positions that are Zs .Therefore, the leading zero

indicator in each following bit position is F = Z̅i + I.

III. PROPOSED LZC AND LZA METHODS

This section discusses about the proposed leading zero
counter and the mathematical equations are derived for the
proposed leading zero counter. The Boolean relations that
describe the bits of the leading-zero count are simplified.
The proposed method will be presented using an example of

an 8-bit LZC unit. Then the value of the encoded bits Z0,Z1

and Z2 are

 Z2=S4.S3+S3.S2+S2.S1+S1.S0
 Z1= S6.S5+S5.S4+S2.S1+S1.S0
 Z0= S7.S6+S5.S4+S3.S2+S1.S0

For the value i>j the pair (Si,Sj) will never take the value of
(1,0) as the string S is monotonically increasing. As the

string S monotonically increases we have Si.Sj=Si and
Si+Sj=Sj for i>j. The tabular column below shows the
reduction when i>j.

Table 1:- Reduction Table

Si Sj Si+Sj=Sj Si.Sj=Si
0 0 0 0
0 1 1 0
1 1 1 1

By using these equations the value of the encoded bits can
be reduced further as

 Z2=S4.S0
 Z1=S6.S4+S2.S0
 Z0=S7.S6+S5.S4+S3.S2+S1.S0

When we consider the above equations, no normalization is
required when the input is equal to zero, the Z bits are also
set to zero. We can also further simplify the above equations
to get the below mathematical equations

 Z2=S4
 Z1=S6.S4+S2
 Z0=S7.S6+S5.S4+S3.S2+S1

Instead of assuming the value of the string S we can directly
compute the leading zero counting from the input operand

A. So the expression of Si is represented by the value of Ai.
The final equations are thus derived as follows
V= A7+A6+A5+A4+A3+A2+A1+A0

Z2=A7+A6+A5+A4
Z1=(A7+A4)[(A3+A2)(A7+A6+A5+A4)]
Z0=[A7.(A7+A6).A5)][(A7+A6)(A5+A4)][A3+(A3+A2)A1]

 The proposed leading zero counter is shown in the figure
below.

Figure 1:- 16 bit im Fig: Implementation of proposed leading zero counter

The proposed LZA method is based on the restricted case
that is A is always greater than or equal to B. According to
this case A-B is always positive and A+B is also positive
that is the result is always positive. Proposed Anticipation
logic is based on generation of intermediate Difference and
Borrow strings.

The proposed leading zero anticipation in addition can be
explained by considering the addition example, consider A=

0010 0110 and B= 0000 1010, now the predicted string Fadd
is obtained as shown below.

Ain  0010 0110
Bin  0000 1010

0011 0000
By the above example we can find that number of leading

zeros in Fadd is equal to number of leading zeros in A, that
is the number of leading zeros in result are always equal to
or one less than operand A.

The subtraction in the proposed leading zero anticipation is
explained considering the subtraction example, consider A=
0011 0110 and B= 0001 1010, now the propagate(P),

borrow(B), difference(D) and the predicted string Fsub is
obtained as shown below

 Ain = 0011 0110

 Bin = 0001 1010

 P = 0010 1100

 B = 0000 1000

 D = 0001 1100

 Fsub = 0011 1100

From the above example, the Fsub is proposed as
Fsub(0) is equal to P(0) and Fsub[n] =P[n] ^ B[n-1] where B
[n]=A̅[n]·B[n]. The addition and subtraction
are proposed by the Boolean algebra expressions as shown
above. The proposed leading zero anticipation method is
accurate and fast when compared with the existing leading
zero anticipation method and overrides it in all aspects. To

contain both the addition and subtraction a multiplexer is
used to select the respective operation. The figure shows the
proposed LZA.

 Proposed LZA

The proposed LZA is more accurate than the existing LZA
method this can be observed in following four cases. Any

combination of input patterns falls into one of these patterns
in the cases considered. In case 1 the number of leading
zeros in the final result are 7 which is equal to the proposed

LZA where the Existing LZA has 11 leading zeros in its
result, in case 2 the number of leading zeros in the final

result are 0 which is equal to the proposed LZA where the
Existing LZA has 2 leading zeros in its result, in case 3 the
number of leading zeros in the final result are 11, the

proposed LZA has 10 leading zeros where the Existing LZA
has 2 leading zeros in its result, in case 4 the number of

leading zeros in the final result are 15 which is equal to the
proposed LZA where the Existing LZA has 2 leading zeros
in its result.

Case1:-

Ain = 1000 0000 1010 0001
Bin = 0111 1111 0110 1001

P = 1111 1111 1100 1000
B = 0111 1111 0100 1000
K = 0000 0000 0001 0110

A- B = 0000 0001 0011 1000
--

Proposed LZA = 0000 0001 0101 1000

Existing LZA = 0000 0000 0001 001x

Case 2:-
Ain = 1001 1100 0010 0001
Bin = 0001 1011 1100 1001

P = 1000 0111 1110 1000
B = 0000 0011 1100 1000
K = 0110 0000 0001 0110

A+B = 1011 0111 1110 1010

Proposed LZA = 1001 1100 0010 0001

--
Existing LZA = 0011 1000 0001 001x

Case 3:-
Ain = 1001 1100 1010 0001
Bin = 1001 1100 1000 1001
--
P = 0000 0000 0010 1000
B = 0000 0000 0000 1000
K = 0110 0011 0101 0110
--

A-B = 0000 0000 0001 1000

Proposed LZA = 0000 0000 0011 1000

Existing LZA = 0011 1001 0101 001x

Case 4:-
Ain = 1001 1100 1010 1000
Bin = 1001 1100 1010 0111

P = 0000 0000 0000 1111
B = 0000 0000 0000 0111
K = 0110 0011 0101 0000

A-B = 0000 0000 0000 0001

Proposed LZA = 0000 0000 0000 0001

Existing LZA = 0011 1001 0101 000x

Thus by the above mathematical derivations and the above
cases show that the proposed methods of leading zero

counting and leading zero anticipation logic can work
effectively and the total delay is reduced compared to the

existing methods.

IV. IMPLEMENTATION RESULTS

The proposed methods of leading zero counting and leading

zero anticipation are implemented on Spartan 3E family

device XC3S250Epackage FT256 with speed -4
and the delay characteristics and the occupancy rates are
compared with the existing method and tabulated below.

Sl.no. Parameters
Existing Proposed

Method Method

1 No. of Slices 12/2448 10/2448

2
No. Of 4

21/4896 17/4896

Input LUTs

3
No. of bonded

21/172 21/172

IOBs

4
Combinational

14.293ns 11.189ns

Path Delay

.
Table1: Comparison of proposed LZC method with existing

Logic Utilization
Proposed

Available

LZA

Number of Slices 32 4656

Number of 4 Input
32 9312

LUTS

Number of bonded
97 232

IOBs

Combinational Path
6.347 ns -

Delay

 Table2: Comparison of proposed LZA method with existing

Figure 2:- screen showing the active low output of the
proposed LZC for the given input 16 bit binary

0010000000000001

Fig2:- Simulation Result of Proposed LZA

The proposed methods are implemented using Veerilog

HDL on Xilinx ISE 10.1 tool and the simulation results for

both the proposed methods are displayed above.

V. CONCLUSION

Logic design for leading zero counter is proposed and the

delay characteristics of the proposed LZC are significantly

reduced when compared with the existing methods. The
accuracy of the proposed LZA is significantly increased

when compared with the existing methods. The design is

implemented using Verilog HDL and verified using

extensive directed-random vectors. The proposed leading

zero counting and anticipation methods can be utilised in

many application areas like RISC, CISC, Microprocessors

and DSP. This proposed LZC and LZA can be effectively

utilised in high speed floating point units.

REFERENCES

[1] Giorgos Dimitrakopoulos, Member, IEEE, Kostas

Galanopoulos, Christos Mavrokefalidis, Student Member,
IEEE,and Dimitris Nikolos, Member, IEEE “Low-Power
Leading-Zero Counting and Anticipation Logic for High-
Speed Floating Point Units” IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, VOL. 16, NO. 7, JULY 2009.

[2] E. Hokenek and R. Montoye, “Leading-zero anticipator
(LZA) in the IBM RISC systed6000 floating-point
execution unit,” IBM J. Res. Develop., vol. 34, pp. 71-77,
Jan. 1990.

[3] M. S. Schmookler and K. J. Nowka, “Leading zero
anticipation and detection : A comparison of methods,” in
Proc. 15th IEEE Symp. Comput. Arithmetic, Jul. 2001, pp.
7–12.

[4] V. Oklobdzija, “An Algorithmic and Novel Design of a

Leading Zero Detector Circuit: Comparison with Logic

Synthesis”, IEEE Transactions on VLSI Systems, v. 2, no. 1,
1993.
[5] M. Schmookler and D. Mikan, “Two-state Leading
Zero/One Anticipator (LZA), US Patent
#5493520, Feb. 1996

