Outdoor scene segmentation and object classification
Using cluster based perceptual Organization

Neha Dabhi
P.G. Student, VTP Electronics & communication Dept., Chaotar Institute of Science & Technology, Changa, Anand, India
ndabhi2@gmail.com

Prof. Hiren Mewada
Associate Professor, VTP Electronics & communication Dept., Chaotar Institute of Science & Technology, Changa, Anand, India
mewadahiren@gmail.com

ABSTRACT:
Humans may be using high-level image understanding and object recognition skills to produce more meaningful segmentation while most computer applications depend on image segmentation and boundary detection to achieve some image understanding or object recognition. The high level and low level image segmentation model may generate multiple segments for the single object within an image. Thus, some special segmentation technique is required which is capable to group multiple segments and to generate single objects and gives the performance close to human visual system. Therefore, this paper proposes the perceptual organization model to perform the above task. This paper addresses the outdoor scene segmentation and object classification using cluster based perceptual organization. Perceptual organization is the basic capability of the human visual system to derive relevant grouping and structures from an image without prior knowledge of its contents. Here, Gestalt laws (Symmetry, alignment and attachment) are utilized to find the relationship between patches of an object obtained using K-means algorithm. The model mainly concentrated on the connectedness and cohesive strength based grouping. The cohesive strength represents the non-accidental structural relationship of the constituent parts of a structured part of an object. The cluster based patches are classified using boosting technique. Then the perceptual organization based model is applied for further classification. The experimental result shows that, it works well with the structurally challenging objects, which usually consist of multiple constituent part and also gives the performance close to human vision.

1. Introduction:

Image segmentation is considered to be one of the fundamental problems for computer vision [Gonzalvez & Woods]. A primary goal of image segmentation is to partition or division of an image into regions which has coherent properties so that each region corresponds to an object or area of interest [Shah, 2008]. The outdoor scenes can be divided into two categories, namely, unstructured objects (e.g., skies, roads, trees, grass, etc.) and structured objects (e.g., cars, buildings, people, etc.). Unstructured objects usually comprise the backgrounds of images. The background objects usually have nearly homogenous surfaces and are distinct from the structured objects in images. Many recent appearances-based
methods have achieved high accuracy in recognizing these background object classes or unstructured objects in the scene [Shotton,2009], [Winn et al.,2005], [Gould et al.,2008].

There are two challenges for outdoor scene segmentation: 1) Structured objects that are often composed of multiple parts, with each part having distinct surface characteristics (e.g., colors, textures, etc.). Without certain knowledge about an object, it is difficult to group these parts together. 2) The Background objects have various shape and size. To overcome these challenges some object specific model is required. In this, our research objective is to detect object boundaries in outdoor scene images solely based on some general properties of the real world objects such as “perceptual organization laws”.

Fig 1.1: Block diagram of outdoor scene segmentation

The fig 1.1 shows the basic block diagram of outdoor scene segmentation. It consist image textonization module for recognizing the appearance based information from the scene, Feature selection module for extraction of features for training the classifier, Boosting for classifying the objects from the scene and finally Perceptual Organization Model for merging multiple segmentation of the particular object.

2. Related Work:

Perceptual Organization can be defined within the context of Visual Computing as the particular approach in qualitatively and or quantitatively characterizing some visual aspect of a scene through computational methodologies inspired by Gestalt psychology. This approach has found special attention in imaging related problems due to its ability to support humanly meaningful information even in the presence of incomplete and noisy contexts. This special track aims to offer an opportunity for new ideas and applications developed on perceptual organization to be brought to the attention of in the wider Computer Science community. It is difficult to perform object detection, recognition, or proper assessment of object-based properties (e.g., size and shape) without a perceptually coherent grouping of the “raw” regions produced by image segmentation. Automatic segmentation is far from being perfect. First, human segmentation actually involves performing object recognition first based on recorded models of familiar objects in the mind. Second, color and lighting variations causes tremendous problems as it create highly variable appearances of objects for automatic algorithms [Xuming He & Zemel, 2006] but are effectively discounted by humans (again because of the models); different segmentation algorithms differ in strengths and weaknesses because of their individual design principles. Therefore, some form of regularization is needed to refine the segmentation [Luo & Guo, 2003]. Regularization may come from spatial color smoothness constraints (e.g., MRF—Markov random field), contour/shape smoothness constraints (e.g., MDL—minimum description length), or object model constraints. To this end, perceptual grouping is
expected to all in the so-called “semantic gap” and play a significant role in bridging image segmentation and high-level image understanding. Perceptual region grouping can be categorized as non-purposive and purposive.

The organization of vision is divided into: 1) low level vision: which consist finding edges, colors and location of object in space, 2) mid level vision: which consist determining object features and segregate object from the background, 3) high level vision: which consist recognition of object, scene and face. Thus there are three cues for perceptual grouping which are low level, mid level and high level cues.

Low-Level cue contain brightness, color, texture, depth, motion based grouping. Martin et al proposed one method which learns and detects natural image boundaries using local brightness, color, and texture cues. The two main results are: 1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is required to detect boundaries in natural images. [Martin et al, 2004]. Sharma & Davis presented a unified method for simultaneously acquiring both the location and the silhouette shape of people in outdoor scenes. The proposed algorithm integrates top-down and bottom-up processes in a balanced manner, employing both appearance and motion cues at different perceptual levels. Without requiring manually segmented training data, the algorithm employs a simple top-down procedure to capture the high-level cue of object familiarity. Motivated by regularities in the shape and motion characteristics of humans, interactions among low-level contour features are exploited to extract mid-level perceptual cues such as smooth continuation, common fate, and closure. A Markov random field formulation is presented that effectively combines the various cues from the top-down and bottom-up processes. The algorithm is extensively evaluated on static and moving pedestrian datasets for both detection and segmentation. [Sharma & Davis, 2007]

Mid-Level cue contain Gestalt law based segmentation. It contains continuity, closure, convexity, symmetry, parallelism etc. Kootstra and D. Kragic developed system for object detection, object segmentation, and segment evaluation of unknown objects based on Gestalt principles. Firstly, the object-detection method will generate hypotheses (fixation points) about the location of objects using the principle of symmetry. Next, the segmentation method separates foreground from background based on a fixation point using the principles of proximity and similarity. The different fixation points and possibly different settings for the segmentation method result in a number of object-segment hypotheses. Finally, the segment-evaluation method selects the best segment by determining the goodness of each segment based on a number of Gestalt principles for figural goodness [Kootstra et al, 2010].

High-Level cue contain familiar objects and configurations which is still in process. High level information – derived attributes, shading, surfaces, occlusion, recognition etc.

Thus, low level cues requires the guidance of high level cues to overcome noise; while high level cues relies on low level cues to reduce the computational complexity. Here, in the proposed work color and texture are used to find the connectness between patches and according the whole object can be merged together. In this for finding the relation...
between the patches the geometric statical knowledge based laws are utilized. Here recognition is also utilized at the third stage in the boosting of the desired object. So, it utilizes all three cues for better performance.

3. IMAGE SEGMENTATION ALGORITHM:

![Flow Diagram of Proposed Image Segmentation Algorithm]

Fig 3.1: Flow Diagram of Proposed Image Segmentation algorithm
Here, we present an image segmentation algorithm based on POM for outdoor scenes. The objective of this research paper is to explore detecting object boundaries which are based on some general properties of the real-world objects, such as perceptual organization laws, which is independent of the prior knowledge of the object. The POM quantitatively incorporates a list of mid level –Gestalt cues. The proposed image segmentation algorithm for an outdoor scene is as shown in fig 2. Now we will see the flow diagram of whole process in fig 3.1.

3.1 Conversion of the image into CIE lab color space

The first step is convert the training images into the perceptually uniform CIE Lab color space. The CIE Lab is specially designed to best approximate for uniform color spaces. We utilized CIE color space for three color bands because the CIE Lab color space is partially invariant to scene lighting modifications—only the L dimension changes in contrast to the three dimensions of the RGB color space, for instance. The nonlinear relations for \(L^*, a^*, b^* \) are intended to mimic the nonlinear response of the eye. Furthermore, uniform changes of components in the \(L^* a^* b^* \) color space aim to correspond to uniform changes in perceived color, so the relative perceptual differences between any two colors in \(L^* a^* b^* \) can be approximated by treating each color as a point in a three-dimensional space (with three components: \(L^*, a^*, b^* \)) and taking the Euclidean distance between them. In this the perceived color difference should correspond to Euclidean distance in the color space chosen to represent features [Kang et. Al., 2008]. Thus, the CIE lab utilized for the best approximation of the perceptual visualization.

3.2 Image Textonization

Natural scenes are rich in color and texture and the human visual system exhibit remarkable ability to detect subtle differences in texture that is generated from an aggregate of fundamental microstructure of an element. The key to this method is to use textons. The term “Texton” is conceptually proposed by Julesz, [Julesz, 1981]. It is a very useful concept in object recognition. It is the compact representations for the range of different appearances of an object. For this we utilize textons [Leung, 2001] which have been proven effective in categorizing materials [Varma, 2005] as well as a generic object classes and context. The term textonization first presented by [Malik, 2001] for describing human textural
perception. A texton images generated from an input image is an image of pixels, where each pixel value in the texton image is a representation of its corresponding pixel value in the input image. Specifically, each pixel value of the input image is replaced by a representation e.g., cluster identification, corresponding to the pixel value of the input image after the input image is being processed. For example, an input image is convolved with a filter bank resulting in 17 degree vectors for each pixel of the input images. The image textonization mainly has two modules: Image Convolution and Image Clustering. And before clustering the augmentation is carried out to improve the accuracy. The whole image textonization module is as shown in Fig 3.2.

The advantages of textons are:
1. Effective in categorizing materials
2. Find generic object classes.

Image textonization process includes the image convolution module and image clustering module which is discussed as below:

3.2.1 Image convolution:
Image convolution process includes the convolution of the pre-processed image training set with a filter bank. There are many types of filter banks like MR8 filter bank, 28D filter Bank, Lung and Malik set etc. [Kang et. Al., 2008] In that MR8 filter bank is utilized in the monochrome image for texture classification experiments. It cannot be applied to color images. The 17 D filter bank is designed for color image segmentation. So MR8 filter bank is expanded up to the infrared band image. The convolution module uses a seventeen dimensional filter bank consisting of Gaussians at scales 1, 2 and 4. A derivative of Gaussian along x and y axes at scales 2 and 4 and finally Laplacian of Gaussian at scales 1, 2, 4 and 8. Here the image is first converted from RGB image into the CIE Lab color space. Thus, these Gaussian filters are computed on all three channels of CIE Lab color space and the rest of the filters are only applied to the luminous channel.

3.2.2 Image Augmentation
The output resulted from convolution is augmented with CIE lab color space. It slightly increases the efficiency.

3.2.3 Image Clustering:
Before clustering the output of convolution which is 17 Dimensional vectors is augmented with the CIE Lab image, thus finally the 20 Dimensional vectors are resulted. The resulted vector is then clustered using the k-means clustering method. In this the number of clusters K must be specified previously. In that from the color image the identification of number of cluster also can be possible. The k-means clustering is preferred because it consider pixels with relatively close intensity values as belonging to one segment even if they are not locationally close and also it is not complex.

3.2.3.1 K-means clustering
K-Means algorithm is an unsupervised clustering algorithm that classifies the input data points into multiple classes based on their inherent distance from each other. The algorithm assumes that the data features form a vector space and tries to find natural clustering in them. The points are clustered around centroids \(\mu_i \) \(\forall i = 1, \ldots k \) which are obtained by minimizing the objective.
\[V = \sum_{i=1}^{k} \sum_{j \in S_i} (x_j - \mu_i)^2 \]

...(3.1)

where there are \(k \) clusters \(S_i, i = 1, 2, \ldots, k \) and \(\mu_i \) is the centroid or mean point of all the points \(x_j \in S_i \).

The algorithm takes a two dimensional image as input. Various steps in the algorithm are as follows:

1. Compute the intensity distribution (also called the histogram) of the intensities.
2. Initialize the centroids with \(k \) random intensities.
3. Repeat the following steps until the cluster labels of the image does not change anymore.
4. Cluster the points based on distance of their intensities from the centroid intensities.

 \[c^{(i)} = \arg \min \| x^{(i)} - \mu_i \|^2 \]

 ...(3.2)

5. Compute the new centroid \(\mu_i \) for each of the clusters.

The main advantage of the K-means method is it gives the descritized representation, such as codebook of features or texton images and also it can model the whole image or specific region of the image with or without spatial context of the image. The Fig 3.3 shows the textonization process applied to image in our case it is applied on preprocessed image and in the preprocessing the image is converted into CIE lab color space.

![Figure 3.3: Textonization Process](image)

3.3 Boosting:

Boosting (also known as arcing — Adaptive Resampling and Combining) is a general method for improving the performance of any learning algorithm. It is an ensemble method. Certain classification problems where a single classifier does not perform well as below:

- **Statistical Reasons**
- **Inadequate availability of data.**
- **Presence of too much data.**
- **Divide and conquer - Data having complex class separations.**
- **Data Fusion.**
Thus, ensembling is used to overcome the above problems and for improvement of the performance. In an ensemble, the output on any instance is computed by averaging the outputs of several hypotheses, possibly with a different weighting. Hence, we should choose the individual hypotheses and their weight in such a way as to provide a good fit. This suggests that instead of constructing the hypotheses independently, we should construct them such that new hypotheses focus on instances that are problematic for existing hypotheses.

Boosting is an algorithm implementing this idea. The final prediction is a combination of the prediction of multiple classifiers. Successive classifier depends upon its predecessors - look at errors from previous classifiers to decide what to focus on for the next iteration over data. Boosting maintains a weight \(w_i \) for each instance \(h(x_i) \); in the training set. The higher the weight \(w_i \), the more the instance \(x_i \) influences the next hypotheses learned. As shown in the fig 3.4 at each trial, the weights are adjusted to reflect the performance of the previously learned hypothesis. It will Construct a hypothesis \(C_t \) from the current distribution of instances described by \(w_i \). It will Adjust the weights according to the classification error \(\varepsilon_t \) of classifier \(C_t \). The strength \(\varepsilon_t \) of a hypothesis depends on its training error.

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right)
\]

...(3.3)

In this if \(\varepsilon_t < 0.5 \) implies \(\alpha_t > 0 \) so weight is decreased and it is the correct classified instance similarly for other condition the weight is increased and it is the incorrect classified instances.

Fig 3.4 : Basic concept of Boosting

Assume a set \(S \) of \(T \) instances \(x_i \in X \) each belonging to one of \(T \) the classes \(\{c^1, \ldots, c^T\} \). The training set consists of pairs \((x_i, c_i)\). A classifier \(C \) assigns a classification \(C_i(x) \in \{c^1, \ldots, c^T\} \) to an instance \(x \). The classifier learned in trial \(t \) is denoted \(C_t \). For each round \(t = 1, \ldots, T \) the sample \(S \) is created of size \(T \). Now obtain the hypothesis \(C^j \) on the bootstrap samples \(S_t \). To an unseen instance \(X \) assign the weighted vote based on the previously learned hypothesis for
all round \(T \) and generated the classifier \(C_t \) at each round. Now obtain a final hypothesis by aggregating the \(T \) classifiers which are shown in Fig 3.5. Freund & Schapire in 1996 proved that Boosting provides a larger increase in accuracy than Bagging. Bagging provides a modest improvement more consistent [Freund & Schapire, 1996]. Boosting is particularly subject to over-fitting when there is significant noise in the training data.

3.4 Perceptual Organization Model:

Let \(\Omega \) represent a whole image domain that consists of the regions that belong to the backgrounds \(R_B \) and the regions that belong to structured objects \(R_S \). \(\Omega = R_B \cup R_S \). After the object identified by posting, we know ours object that we want to segment which is called the region \(R_S \). Let \(P_o \) be the initial part of the object which is obtained from the k-means clustering technique. Let \(a \) denote a small patch from the initial partition \(P_o \). For \(\forall (a \in P_o) \land (a \in R_S), a \) is one of the constituent parts of an unknown structured object. Based on initial part \(a \) we want to find the maximum region \(R_a \subset R_S \) so that the initial part \(a \in R_a \) and for any uniform patch \(i \); where \((i \in P_o) \land (i \in Ra) \), \(i \) should have some special structural relationships that obey the non-accidents principle with the remaining patches \(Ra \). Here we have applied Gestalt laws on those and merged based on the cohesive strength and boundary energy function.

3.4.1 Cohesive Strength

It is the ability of the patch to remain connected with the other. It measures how tightly the image patch \(i \) is attached to the other parts of the structured object. The Cohesive Strength is calculated as:

\[
Cohessiveness = \phi_{ij} \psi_{ij} \lambda_{ij} \quad \text{For} \quad i \neq a \lor j \in \text{neighbors}(i)
\]
(3.4)

Here, \(a \) is the initial part and \(j \) is the other neighboring patch of the patch \(i \). \(\phi_{ij}, \psi_{ij}, \lambda_{ij} \) measures the symmetry, alignment, attachment between the two patches. If the initial part \(a \) is equal to the image patch \(i \) then cohesive strength is 1. Thus the maximum value of the cohesive strength can be achieved, as it belongs to the structured object.

3.4.1.1 Symmetry

Here, we have measured the symmetry between \(i \) and \(j \) patches along the vertical direction because the parts which are approximately symmetric along the vertical axis are very likely belonging to the same object. Symmetry of \(i \) and \(j \) along the vertical axis is defined as [Cheng et al., 2012]

\[
\Phi_{ij} = 1 - \delta_{y_i \cdot y_j}
\]
(3.5)

Where \(\delta \) is the Kronecker delta Function, \(y_i, y_j \) are the column coordinates of the centroids of patches \(i \) and \(j \). If \(y_i \) and \(y_j \) are very close, this means that the patches are approximately symmetric along the vertical direction.
3.4.1.2 Alignment
This alignment test encodes the continuity law. The good continuation between components can only be established if the object parts are strictly aligned along a direction, so the boundary of the merged components will have a good continuation. The principle of good continuation states that a good segmentation should have smooth boundaries. Alignment of \(i \) and \(j \) is defined as

\[
\Psi_{ij} = 0 \quad \text{if} \quad \partial_i \cap \partial_j = \emptyset \land \partial_i \cap \partial_j = \emptyset
\]

or

\[
\Psi_{ij} = 1 \quad \text{if} \quad \partial_i \cap \partial_j \neq \emptyset \lor \partial_i \cap \partial_j \neq \emptyset
\]

… (3.6)

Where, \(\partial_{ij} \) is the common boundary between patches \(i \) and \(j \). \(\emptyset \) denotes the empty set.

3.4.1.3 Attachment
If patches \(i \) and \(j \) are neither symmetric nor aligned then we have to find the attachment. It gives a measure of how much the image patch \(i \) is attached to the other patch \(j \). It is defined as [Cheng et al., 2012]

\[
\lambda_{i,j} = \frac{\exp(-\cos(\omega) \bullet L(\partial_{ij}))}{L(\partial_i) + L(\partial_j)}
\]

… (3.7)

It depends on the ratio of the common boundary length between two patches and sum of the boundary length between two patches. Here, \(\omega \) is angle between the line connecting two ends of \(\partial_{ij} \) and the horizontal line starting from one end of \(\partial_i \), \(L(\partial_i) \), \(L(\partial_j) \) is the length of the patch \(i \) and \(j \) , \(L(\partial_{ij}) \) is the length of the common boundary of the patches \(i \) and \(j \) .

When \(L(\partial_i) >> L(\partial_j) \) or \(L(\partial_j) >> L(\partial_i) \) then a larger one belongs to the background object such as wall, road etc.

If the patch \(i \) and \(j \) have similar sizes and share a long common boundary, this means that and might be adjacent in the 3-D world. In other words, \(i \) is considered to be in close proximity to \(j \). For this case, \(i \) and \(j \) are considered to be strongly attached. Here ‘\(\cos(\omega) \)’ is used as controlling parameter. Because two patches \(i \) and \(j \) are tightly attached along horizontal axis but they may still belong to the neighboring objects. In general, vertically attached parts have larger attachment strength than those horizontally attached. Thus, it controls the cohesive strength of two attaching patches according to the attachment orientation.
3.4.2 Energy Boundary Function

The boundary energy function is a good way for measuring how good a region is [Cheng et al., 2012]. Any optimal segmentation is a merged result of elementary regions. Those elementary regions are equivalent to the UC objects in perceptual organization. The elementary regions are the fundamental units of the optimal segmentation of the image. In this the region will be merged based on the Boundary function. That boundary function encodes the local structural relationship between the neighboring parts of the structured object. That function is designed by using gestalt laws. That encodes the Symmetry, alignment and attachment into the function and based on the merging will be performed. The function is defined as [Cheng et al., 2012]

\[f(x, y) = \exp(-\theta \cdot a \times s_i - s_a) \]

With \((x, y) \in R\) … (3.8)

Where, \(\theta\) is a weight vector which is empirically set to \(\theta = [18, 3.5]\) in our implementation. Vector \(S_i = [B_i, C_i]\), which is a point in the structural context space encoding the structural information about image patch \(i\), which depends on the boundary complexity function and the cohesive strength. \(S_a\) is a reference point in the structure’s context spaces, which encodes the structural information of initial part. Since it is the only known information that we have about the unknown structured object, we use as a reference point. Notice that, at the beginning of the grouping process, region only contains initial part. In that case \(i = a, f(x, y) = 1\), which means that we always set the largest weighted element to initial part. Then, we try to grow region by including the neighbors of the region based on the cohesive strength. If the two patches are neighbor and strongly attached with each other then the cohesive strength is higher. \(C_i\) is the cohesive strength which is defined in section 3.3.1.

Then, \(f(x, y)\) which is called the boundary function which is designed by four Gestalt laws i.e., Similarity, Symmetry, Alignment and Attachment are used for designing the boundary energy function, which is defined as:

![Fig 3.6](image-url)

(a) Symmetry relations: the red dots indicate the centroids of the components. (b) Alignment relations. (c) Two components are strongly attached. (d) Two components are weakly attached. [Cheng et al., 2012]
\[
E[\partial R] = \frac{-\iint_{R} f(x, y) \, dx \, dy}{L(\partial R)}
\]
\(\ldots (3.9) \)

Where, \(L(\partial R) \) is the boundary length of the region \(R \). \(f(x, y) \) is the weight function in the region \(R \). The criterion of region goodness depends on how weight function \(f(x, y) \) is defined and the boundary length \(L(\partial R) \). Here the function \(f(x, y) \) encodes the local structural relationships between neighboring parts contained in region \(R \). Here the boundary length \(L(\partial R) \) reflects the global property of region \(R \). In this, we have find the energy of the reference patch and the energy of after the union of the two patches if the energy of the union of the two patches is smaller than the energy of the initial part then only they will be merged.

3.4.2.1 Boundary Complexity

Boundary complexity is a description of curve regularity. In human perceptual systems, two factors have an influence on the regularity of a curve: the singularities in curve features such as tangent or curvature (angular) discontinuities. Usually, the singularity of curve features can be described by its frequency and strength (amplitude). The amplitude can be defined as

\[
Amplitude = 1 - \left\| p_{d+1} - p_d \right\|
\]
\(\ldots (3.10) \)

Here, \(p_{d+1} \) and \(p_d \) are the two pixels of a segment of the boundary. The frequency depends on the number of pixels of the boundary of patch which is denoted as \(N \), \(n \) is the number of notches in the patch. A notch means a non-convex portion of a polygon, which is defined as a vertex with an inner angle larger than \(180^0 \) [Brinkhoff et al., 1995]

\[
Frequency = 1 - 2^x \left| 0.5 - \frac{n}{N-3} \right|
\]
\(\ldots (3.11) \)

Then from above two equations finally BC can be implemented as follows:

\[
BC = \frac{1}{N} (Amplitude \cdot Frequency)
\]
\(\ldots (3.12) \)

Thus, here we have implemented the POM based on cohesive strength and boundary energy. The cohesive strength depends on the symmetry, alignment, continuity and attachment directly. While in the boundary energy, there is one function which encodes the all above three laws and finds the amplitude and frequency based shape estimation and accordingly the POM works.

4. EXPERIMENT SETUP AND DISCUSSION OF RESULTS

4.1 Principle of Perceptual Organization Model

The main focus of this dissertation is outdoor scene segmentation which consist the structured and unstructured object classification. The flow diagram of outdoor scene segmentation and object classification is already discussed in section 3.
The very first step is to convert the RGB image into CIE lab color space because it is good for perceptually uniform color space as discussed in section 3.1. The fig 4.1 shows the RGB image into CIE lab color space.

![Original Image](image1.png) ![CIE Lab image](image2.png)

Fig 4.1: Conversion of the RGB image into CIE lab color space: (a) Original Image (b) CIE Lab image.

Then the image textonization process is carried out. A texton image generated from an input image is an image of pixels, where each pixel value in the texton image is a representation of its corresponding pixel value in the input image. Specifically, each pixel value of the input image is replaced by a representation e.g., a cluster identification, corresponding to the pixel value of the input image after the input image is being processed. For example, an input image is convolved with a filter bank resulting in 17 degree vector for each pixel of the input images. The image textonization mainly has two modules: Image Convolution and Image Clustering. And before clustering the augmentation is carried out to improve the accuracy. The whole image textonization module is as shown in Fig 5.3. The first step of textonization is an image convolution with the filter bank. Thus, the resulted CIE lab image is then convolved with various edge based filters as discussed in section 4.2.

![17 dimensional filter Bank](image3.png)

Fig 4.2: 17 dimensional filter Bank

The 17 degree vector of the input image is then augmented with the CIE Lab color space for improving the accuracy. Thus, it results the 20 dimensional vector.
The next step is k means clustering which is applied on the 20 degree vectors. The algorithm used for clustering is the k-means clustering, which is discussed in section 4.2.1. One of the main disadvantages to k-means is the fact that you must specify the number of clusters as an input to the algorithm. As designed, the algorithm is not capable of determining the appropriate number of clusters and depends upon the user has to identify this in advance. For example, if you had a group of people that were easily clustered based upon gender, calling the k-means algorithm with \(k = 3 \) would force the people into three clusters, when \(k = 2 \) would provide a more natural fit. Similarly, if a group of individuals were easily clustered based upon home state and you called the k-means algorithm with \(k = 20 \), the results might be too generalized to be effective. But the time requirement and complexities are high. In Fig 4.3 there are seven clusters resulted from the k-means clustering. Now the 20 degree vector is represented by the clusters. The resulted texton image is called the textonmap or texture cluster. Each pixel in each image is assigned to the nearest cluster center, producing the texton map which is shown in fig 4.4.

![Fig 4.3](image1.jpg)

Fig 4.3 : Resultant clusters from k-means clustering (k=7)

![Fig 4.4](image2.jpg)

Fig 4.4 : Textonmap resulted from k-means clustering (k=7)

![Fig 4.5](image3.jpg)

Fig 4.5 : Textonmap resulted from k-means clustering (k=7) for the object ‘car’

In this there are so many patches resulted. This paper includes finding of the non accidental relationship of the structurally challenging objects by using the perceptual organization model. Here we have taken the object ‘CAR’. For labeling the object LabelMe database is utilized[Online]. The LabelMe database consists many images with different object classes like sky ,roads ,buildings ,vehicles ,people ,signs etc. Here we have used car images. The fig 4.3 shows the cluster image for whole image. Now from that, extract the patches which consist of car only. The Fig 4.5 shows the different cluster which consists car only. Now in fig 4.5 we can see that there are so many patches resulted. Thus our
aim is to merge all those patches and recognize car as one object so we can achieve the performance close to the human vision, which is the central idea of this dissertation.

In fig 4.6 (a) we can see that the car is segmented into many patches it is low level segmentation but the human can identify the car as one whole object. Thus, POM works on the principle that it identifies the structural relationship between the constituent parts of an object and grouped them together.

![Principle of POM](image)

Fig 4.6 : Principle of POM

The result of textonization process can be visualized in above Fig 4.5. There are so many patches in the background are there. So here we have subtracted the background and extracted the desired object. Also the Car is not segmented into one object and it is partitioned into many patches. Therefore, the rest of section describe sthe grouping of this multiple clusters.

4.2 Boosting based object classification.

In this section we present the experimental results for boosting based object classification algorithm for the outdoor environment and object classification method on the LabelMe and ICCV database. The images cover various environments like urban areas, suburban areas, residence areas, roads, airports, etc. and it contains the variety of object classes like skies, roads, buildings, vehicles, vegetation, people, signs, cars etc… Here generation of the single scale boosting detector is carried out. In this experimentation the LabelMe toolbox [Online] is utilized.

The very first step is to generate the annotations of the images and create the database of the training images and annotations. That is done by LabelMe tool provided on the website [Online].

In this we have learned the two objects named as: ‘car+side-part-occuluded’. There are handpicked set of filters Laplacian, x derivative and y derivative which extract the features from the images and also the original image. The masks of the filter are as per discussed in section 5.4. Here, edge based filters are utilized, as edges are good texture signature. In this the image is retrieved based on the sample image queries. Initially, there are 8 samples of images are utilized to build the dictionary of patches. There are 20 numbers of patches extracted from every image. The size of the
training image is [128 200]. There are 30 background samples are extracted from every image. The size of the test image is [256 256]. Now, there are 50 images are used here for training. Thus, here total no of filters are 4 (Laplacian, \(x\) derivative and \(y\) derivative and original image) from which the patches are extracted from every example are 20 thus total 80 patches are extracted from every image, which are shown in below Fig 4.7.

Then, we have created the annotations of the images. Here, the annotation which consist the ground truth of the images created from LabelMe web is taken which are further used. Then the next step is to create the dictionary of features. From each object class get 10 images, which are normalized in size. Then filter the image with one filter (3 filters \(-x\) derivative, \(y\) derivative and laplacian), thus there are 9 outputs resulted. Then fragment sampling location on a regular grid 3x3. Thus, there are 10x3x9=270 fragments are resulted from each object. Now store indices of images used for building dictionary.

The next step is to crop the desired object from the image and create mask of the desired object which will be further utilized in foreground and background binary identification process. Now, pre-compute the features of all images and store the feature output on the centre of the target object and on sparse set of location from the background. Here there is one loop which finds the sample location for negative examples where the template produces the strong false alarms. Thus in the resultant image the one red square represents the centre of the detected object and 30 green square represents the background objects. In this binary categorization is used thus the detected object has +1 class and background objects have -1 class.
Now train the detector by the help of training data and features generated as above and selected 120 weak classifiers. In the gentleboost classifier $D(i)$ is the weight for each training sample, which determine the probability of being selected for a training set for an individual component classifier. Initially, we have given uniform weight across the training set. Now at each round we find a classifier that will minimize the error with respect to distribution. In the next round we will assign the higher weight to the misclassified data and less weight to the correctly classified data. Thus, the new distribution is used to train the next classifier and the process is iterated up to 120, because we have selected 120 weak classifiers.

Here, single scale boosted detector algorithm is utilized, it runs the strong classifier on an image at a single scale and outputs the bounding boxes and scores which are used to find the point on the precision recall curve. And then the final output which contains the classified object is plotted. According to the object classification the true alarm or false alarm resulted, which shows correct classified object or misclassified object which are shown in Fig 4.10. While the Fig 4.11 shows the precision – recall curve for 120 learners. Here, we can see that there are two cars in that image from them the one car is correctly classified while the other cannot be classified so the false alarm is there.
4.3 POM based segmentation

As discussed in section 3.4 the relationship between the constituent parts of an object and then merging is carried out based on two parameters: Cohesive Strength and energy.

In the algorithm we have selected one reference patch \(a \) then checked the neighborhood of all patches with each other in an image and found the vector \(v \) which contains the connected component with the image patch \(i \). Then, the laws applied on that patch and calculated the cohesive strength is calculated from equation 4.4 and the energy is calculated as per section 3.4.2. Then we have established the energy criteria and cohesive strength criteria as below based on that the merging process is carried out.

Condition:

Cohesive Strength Criteria: Cohesive Strength > 0.85

Energy Boundary Criteria: \(E(\partial(R_a) \cup v) < E(\partial(R_i)) \)

Here, \(R_a \) is the boundary which contains the reference patch \(a \). If this condition is fulfilled then the region will be merged and if it is not fulfilled then select next neighbor. Finally store all the data for next round and repeat the process. Similarly, for cohesive strength if cohesive strength > 0.85 then merge patches otherwise select next patch. Finally store all the data for next round and repeat the process.

First cohesive strength is analyzed and based on it merging is carried out. In the fig 4.12 we can see there are two different patches one is represented by red boundary and the other one is represented by blue boundary. The cohesive strength between those patches is 0.9972, which is greater than 0.85, thus it fulfill the criteria so, it will merge both regions and here you can see the merged patch on the right hand side. Now analyze the true positive ration (TPR) with overall object which is 50.47%. Then in the next step that boundary is taken as input and check the non-accidental relationship with other parts of structured object so the next patch is shown by blue boundary as shown in fig 4.12 with that the cohesive strength is 0.91 so it also merged with that. In that the TPR is 58.52% . Now this process will be continued and the more results are as shown in fig 4.12.

![Cohesive Strength=0.9972
Energy=-1.4083
TPR=50.473343%](image1)

![Cohesive Strength=0.9100
Energy=-3.7173
TPR=58.520179%](image2)
Now, the boundary energy based merging of the patch is as follows. Here, in Fig 5.12 beside the patches there is a box which shows the parameter extracted from that patch. For first one the cohesive strength is 0.9972 but the boundary energy is -1.4083 which is greater than the energy of the reference patch which is -1.7323 so they will not merge. Now the next patch is taken, it will find the energy of that patch with its neighboring patch which is shown in Fig 5.13 by blue boundary which is -3.7173 which is less than the boundary energy of the reference patch, so they both merge. Thus this process is continued. The results are shown in Fig 5.13.

The Fig 4.14 shows the final result of the segmentation after round 1. We can see that we can achieve the good result in cohesive strength based merging criteria. In the energy based phenomenon there are so many patches remaining. It is observed that part is weakly attached so it cannot group together with the whole.
Energy = -2.9666, TPR = 62.381%

Energy = -3.0587, TPR = 63.278%

Fig 4.13: First Round of POM (Merging based on Energy Boundary)

The fig 4.14 shows the final result of the segmentation after round 1. We can see that we can achieve the good result in cohesive strength based merging criteria. In the energy based phenomenon there are so many patches remaining. It is observed that part is weakly attached so it cannot group together with the whole.

Fig 4.14: Comparison after Round 1 (a) Output of Cohesive strength (b) Output of Boundary Energy

Now, above result is the input of second round. The fig 4.15 shows the other patches merged with the boundary extracted from the first round. Here we can see that the cohesive strength wise they can merge but they do not follow the energy criteria so they will not merge.

Fig 4.15: Patch merging in second round

Cohesive Strength=0.9982
Energy=-0.6890

Cohesive Strength=0.9970
Energy=-1.3804
The fig 4.16 shows the intermediate results of the ‘car’. Now, merge the patches until there is no patch remaining without merging which is connected with the other based on both parameter cohesive strength and energy. The final output is shown in Fig 4.17.
Fig 4.18 (a) Original image (b-f) Illustration of Patch merging process

Fig 4.19: (a) Resultant Image based on cohesive strength (b) Resultant Image based on Energy

Fig 4.18 (a) Original image (b) Resultant Image based on cohesive strength (c) Resultant Image based on Energy
5.4 Evaluation

Now, here the performance analysis is carried out based on TPR. At iteration 1 there are two patches (patch 11 and patch 4), we have checked here the symmetry, alignment & attachment and calculated the cohesive strength as equation 4.4. Then cohesiveness is higher than 85% with each other so they both merged. Now, we will see the boundary energy, it is based on shape complexity function which is discussed in section 3.4. Then, the shape complexity is higher so they will not merged. Now, next time that merged patch is utilized and the next one is patch 5 is taken again same procedure is carried out. At that stage the cohesive strength is 58.520% . And for energy, initially two patches (patch 11 and patch 5) have taken then calculated the energy as equation 4.9. The shape complexity is lesser in this so, they fulfill the condition which is discussed in section 5.3 so they both merge at that time the TPR is 56.020% for whole image which is lesser compared to cohesive strength which is 58.520% which can be analyzed in below table so TPR is less because here the 4th patch is not merged. This process will be continued until it finds any structural relationship with the neighboring patch and they will be merged which is discussed above. Table 5.1 contains the performance analysis and patch merging process for the input image. In that Outboundary1 is the merged patch in the first round. Similarly, Outboundary2 is the merged patch in the second round. We can analyzed from Table 5.1 that there were some patches still there in merging based on cohesive strength but not in boundary energy based merging. So, finally we got higher TPR value in case of cohesive-strength compared with boundary energy.

<table>
<thead>
<tr>
<th>POM Round</th>
<th>Merged patch based on Cohesive Strength</th>
<th>Cohesive Strength</th>
<th>Merged patch based on Boundary energy</th>
<th>Boundary Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round</td>
<td>{11,5}</td>
<td>58.520%</td>
<td>{11,5}</td>
<td>56.020%</td>
</tr>
<tr>
<td></td>
<td>{11,4,5,7}</td>
<td>60.712%</td>
<td>{11,5,7}</td>
<td>59.267%</td>
</tr>
<tr>
<td></td>
<td>{11,4,5,7,8,9}</td>
<td>66.317%</td>
<td>{11,5,7,9}</td>
<td>62.381%</td>
</tr>
<tr>
<td></td>
<td>{11,4,5,7,8,9,15}</td>
<td>67.090%</td>
<td>{11,5,7,9,15}</td>
<td>63.278%</td>
</tr>
<tr>
<td>Second Round</td>
<td>{Outboundary1,12,14}</td>
<td>72.820%</td>
<td>{Outboundary1}</td>
<td>63.278%</td>
</tr>
<tr>
<td>Third Round</td>
<td>{Outboundary2,2,6}</td>
<td>76.332%</td>
<td>{Outboundary1}</td>
<td>63.278%</td>
</tr>
</tbody>
</table>
Conclusion:

This dissertation is motivated by the need of human visual system based segmentation. The block diagram of outdoor scene segmentation carries image textonization module for recognizing the appearance based information from the scene, Feature selection module for extraction of features for training the classifier, Boosting for classifying the objects from the scene and finally Perceptual Organization Model for merging multiple segmentation of the particular object. The image segmentation algorithm is based on a Perceptual Organization model. The Perceptual Organization model can ‘perceive’ the special structural relations among the constituent parts of an unknown object and hence can group them together without object-specific knowledge. The results of proposed image segmentation based on POM process can be visualized and analyzed with both cohesive strength and boundary energy parameter. As we can see in this, the cohesive strength based POM gives good result compared with the boundary energy parameter. Here we have taken the object ‘CAR’ which is not merged into one object. But it tries to merge into one but the patches which are not connected with each other, they cannot merge. So, we can get above result. The experimental result shows that, it works well with the structurally challenging objects, which usually consist of multiple constituent part and also gives the performance close to human vision. So, the prediction of human eye fixation can be done.

Future work:

In this paper the merging of patches is based on geometrical laws and the singularity of curve features can be described by its frequency and strength (amplitude). In this we have computed amplitude of boundary complexity function based on fixed window length. So, include sliding window with variable window based concept in shape complexity estimation and then analyze the performance of the model then it can improve the results. This paper concentrated on merging the patches based on mid level cues which are Gestalt Laws – Symmetry, Alignment, Attachment, Continuity. Thus, to improve the performance include more laws and also include some other cues into the model.

References:

Books:

Web sites:

Journal articles

Conference:
